Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Lancet Microbe ; 4(11): e875-e882, 2023 11.
Article in English | MEDLINE | ID: mdl-37844595

ABSTRACT

BACKGROUND: Rapid antigen tests (RATs) were crucial during the COVID-19 pandemic. Information provided by the test manufacturer in product package inserts, also known as instructions for use (IFUs), is often the only data available to clinicians, public health professionals, and individuals on the diagnostic accuracy of these tests. We aimed to assess whether manufacturer IFU accuracy data aligned with evidence from independent research. METHODS: We searched company websites for package inserts for RATs that were included in the July 2022 update of the Cochrane meta-analysis of SARS-CoV-2 RATs, which served as a benchmark for research evidence. We fitted bivariate hierarchical models to obtain absolute differences in sensitivity and specificity between IFU and Cochrane Review estimates for each test, as well as overall combined differences. FINDINGS: We found 22 (100%) of 22 IFUs of the RATs included in the Cochrane Review. IFUs for 12 (55%) of 22 RATs reported statistically significantly higher sensitivity estimates than the Cochrane Review, and none reported lower estimates. The mean difference between IFU and Cochrane Review sensitivity estimates across tests was 12·0% (95% CI 7·5-16·6). IFUs in three (14%) of 22 diagnostic tests had significantly higher specificity estimates than the Cochrane Review and two (9%) of 22 had lower estimates. The mean difference between IFU and Cochrane Review specificity estimates across tests was 0·3% (95% CI 0·1-0·5). If 100 people with SARS-CoV-2 infection were tested with each of the tests in this study, on average 12 fewer people would be correctly diagnosed than is suggested by the package inserts. INTERPRETATION: Health professionals and the public should be aware that package inserts for SARS-CoV-2 RATs might provide an overly optimistic picture of the sensitivity of a test. Regulatory bodies should strengthen their requirements for the reporting of diagnostic accuracy data in package inserts and policy makers should demand independent validation data for decision making. FUNDING: None.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Pandemics , Product Labeling , Sensitivity and Specificity , Systematic Reviews as Topic
2.
Cancers (Basel) ; 14(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35892881

ABSTRACT

Background: Ovarian cancer (OC) is a diagnostic challenge, with the majority diagnosed at late stages. Existing systematic reviews of diagnostic models either use inappropriate meta-analytic methods or do not conduct statistical comparisons of models or stratify test performance by menopausal status. Methods: We searched CENTRAL, MEDLINE, EMBASE, CINAHL, CDSR, DARE, Health Technology Assessment Database and SCI Science Citation Index, trials registers, conference proceedings from 1991 to June 2019. Cochrane collaboration review methods included QUADAS-2 quality assessment and meta-analysis using hierarchical modelling. RMI, ROMA or ADNEX at any test positivity threshold were investigated. Histology or clinical follow-up was the reference standard. We excluded screening studies, studies restricted to pregnancy, recurrent or metastatic OC. 2 × 2 diagnostic tables were extracted separately for pre- and post-menopausal women. Results: We included 58 studies (30,121 patients, 9061 cases of ovarian cancer). Prevalence of OC ranged from 16 to 55% in studies. For premenopausal women, ROMA at a threshold of 13.1 (+/−2) and ADNEX at a threshold of 10% demonstrated significantly higher sensitivity compared to RMI I at 200 (p < 0.0001) 77.8 (72.5, 82.4), 94.9 (92.5, 96.6), and 57.1% (50.6 to 63.4) but lower specificity (p < 0.002), 92.5 (90.0, 94.4), 84.3 (81.3, 86.8), and 78.2 (75.8, 80.4). For postmenopausal women, ROMA at a threshold of 27.7 (+/−2) and AdNEX at a threshold of 10% demonstrated significantly higher sensitivity compared to RMI I at a threshold of 200 (p < 0.001) 90.4 (87.4, 92.7), 97.6 (96.2, 98.5), and 78.7 (74.3, 82.5), specificity of ROMA was comparable, whilst ADneX was lower, 85.5 (81.3, 88.9), 81.3 (76.9, 85.0) (p = 0.155), compared to RMI 55.2 (51.2, 59.1) (p < 0.001). Conclusions: In pre-menopausal women, ROMA and ADNEX offer significantly higher sensitivity but significantly decreased specificity. In post-menopausal women, ROMA demonstrates significantly higher sensitivity and comparable specificity to RMI I, ADNEX has the highest sensitivity of all models, but with significantly reduced specificity. RMI I has poor sensitivity compared to ROMA or ADNEX. Choice between ROMA and ADNEX as a replacement test will depend on cost effectiveness and resource implications.

3.
Cochrane Database Syst Rev ; 7: CD013705, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35866452

ABSTRACT

BACKGROUND: Accurate rapid diagnostic tests for SARS-CoV-2 infection would be a useful tool to help manage the COVID-19 pandemic. Testing strategies that use rapid antigen tests to detect current infection have the potential to increase access to testing, speed detection of infection, and inform clinical and public health management decisions to reduce transmission. This is the second update of this review, which was first published in 2020. OBJECTIVES: To assess the diagnostic accuracy of rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. We consider accuracy separately in symptomatic and asymptomatic population groups. Sources of heterogeneity investigated included setting and indication for testing, assay format, sample site, viral load, age, timing of test, and study design. SEARCH METHODS: We searched the COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) on 08 March 2021. We included independent evaluations from national reference laboratories, FIND and the Diagnostics Global Health website. We did not apply language restrictions. SELECTION CRITERIA: We included studies of people with either suspected SARS-CoV-2 infection, known SARS-CoV-2 infection or known absence of infection, or those who were being screened for infection. We included test accuracy studies of any design that evaluated commercially produced, rapid antigen tests. We included evaluations of single applications of a test (one test result reported per person) and evaluations of serial testing (repeated antigen testing over time). Reference standards for presence or absence of infection were any laboratory-based molecular test (primarily reverse transcription polymerase chain reaction (RT-PCR)) or pre-pandemic respiratory sample. DATA COLLECTION AND ANALYSIS: We used standard screening procedures with three people. Two people independently carried out quality assessment (using the QUADAS-2 tool) and extracted study results. Other study characteristics were extracted by one review author and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test, and pooled data using the bivariate model. We investigated heterogeneity by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status. MAIN RESULTS: We included 155 study cohorts (described in 166 study reports, with 24 as preprints). The main results relate to 152 evaluations of single test applications including 100,462 unique samples (16,822 with confirmed SARS-CoV-2). Studies were mainly conducted in Europe (101/152, 66%), and evaluated 49 different commercial antigen assays. Only 23 studies compared two or more brands of test. Risk of bias was high because of participant selection (40, 26%); interpretation of the index test (6, 4%); weaknesses in the reference standard for absence of infection (119, 78%); and participant flow and timing 41 (27%). Characteristics of participants (45, 30%) and index test delivery (47, 31%) differed from the way in which and in whom the test was intended to be used. Nearly all studies (91%) used a single RT-PCR result to define presence or absence of infection. The 152 studies of single test applications reported 228 evaluations of antigen tests. Estimates of sensitivity varied considerably between studies, with consistently high specificities. Average sensitivity was higher in symptomatic (73.0%, 95% CI 69.3% to 76.4%; 109 evaluations; 50,574 samples, 11,662 cases) compared to asymptomatic participants (54.7%, 95% CI 47.7% to 61.6%; 50 evaluations; 40,956 samples, 2641 cases). Average sensitivity was higher in the first week after symptom onset (80.9%, 95% CI 76.9% to 84.4%; 30 evaluations, 2408 cases) than in the second week of symptoms (53.8%, 95% CI 48.0% to 59.6%; 40 evaluations, 1119 cases). For those who were asymptomatic at the time of testing, sensitivity was higher when an epidemiological exposure to SARS-CoV-2 was suspected (64.3%, 95% CI 54.6% to 73.0%; 16 evaluations; 7677 samples, 703 cases) compared to where COVID-19 testing was reported to be widely available to anyone on presentation for testing (49.6%, 95% CI 42.1% to 57.1%; 26 evaluations; 31,904 samples, 1758 cases). Average specificity was similarly high for symptomatic (99.1%) or asymptomatic (99.7%) participants. We observed a steady decline in summary sensitivities as measures of sample viral load decreased. Sensitivity varied between brands. When tests were used according to manufacturer instructions, average sensitivities by brand ranged from 34.3% to 91.3% in symptomatic participants (20 assays with eligible data) and from 28.6% to 77.8% for asymptomatic participants (12 assays). For symptomatic participants, summary sensitivities for seven assays were 80% or more (meeting acceptable criteria set by the World Health Organization (WHO)). The WHO acceptable performance criterion of 97% specificity was met by 17 of 20 assays when tests were used according to manufacturer instructions, 12 of which demonstrated specificities above 99%. For asymptomatic participants the sensitivities of only two assays approached but did not meet WHO acceptable performance standards in one study each; specificities for asymptomatic participants were in a similar range to those observed for symptomatic people. At 5% prevalence using summary data in symptomatic people during the first week after symptom onset, the positive predictive value (PPV) of 89% means that 1 in 10 positive results will be a false positive, and around 1 in 5 cases will be missed. At 0.5% prevalence using summary data for asymptomatic people, where testing was widely available and where epidemiological exposure to COVID-19 was suspected, resulting PPVs would be 38% to 52%, meaning that between 2 in 5 and 1 in 2 positive results will be false positives, and between 1 in 2 and 1 in 3 cases will be missed. AUTHORS' CONCLUSIONS: Antigen tests vary in sensitivity. In people with signs and symptoms of COVID-19, sensitivities are highest in the first week of illness when viral loads are higher. Assays that meet appropriate performance standards, such as those set by WHO, could replace laboratory-based RT-PCR when immediate decisions about patient care must be made, or where RT-PCR cannot be delivered in a timely manner. However, they are more suitable for use as triage to RT-PCR testing. The variable sensitivity of antigen tests means that people who test negative may still be infected. Many commercially available rapid antigen tests have not been evaluated in independent validation studies. Evidence for testing in asymptomatic cohorts has increased, however sensitivity is lower and there is a paucity of evidence for testing in different settings. Questions remain about the use of antigen test-based repeat testing strategies. Further research is needed to evaluate the effectiveness of screening programmes at reducing transmission of infection, whether mass screening or targeted approaches including schools, healthcare setting and traveller screening.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19 Testing , Humans , Pandemics , Point-of-Care Systems , SARS-CoV-2 , Sensitivity and Specificity
4.
Cochrane Database Syst Rev ; 7: CD011964, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35879201

ABSTRACT

BACKGROUND: Ovarian cancer (OC) has the highest case fatality rate of all gynaecological cancers. Diagnostic delays are caused by non-specific symptoms. Existing systematic reviews have not comprehensively covered tests in current practice, not estimated accuracy separately in pre- and postmenopausal women, or used inappropriate meta-analytic methods. OBJECTIVES: To establish the accuracy of combinations of menopausal status, ultrasound scan (USS) and biomarkers for the diagnosis of ovarian cancer in pre- and postmenopausal women and compare the accuracy of different test combinations. SEARCH METHODS: We searched CENTRAL, MEDLINE (Ovid), Embase (Ovid), five other databases and three trial registries from 1991 to 2015 and MEDLINE (Ovid) and Embase (Ovid) form June 2015 to June 2019. We also searched conference proceedings from the European Society of Gynaecological Oncology, International Gynecologic Cancer Society, American Society of Clinical Oncology and Society of Gynecologic Oncology, ZETOC and Conference Proceedings Citation Index (Web of Knowledge). We searched reference lists of included studies and published systematic reviews. SELECTION CRITERIA: We included cross-sectional diagnostic test accuracy studies evaluating single tests or comparing two or more tests, randomised trials comparing two or more tests, and studies validating multivariable models for the diagnosis of OC investigating test combinations, compared with a reference standard of histological confirmation or clinical follow-up in women with a pelvic mass (detected clinically or through USS) suspicious for OC. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed quality using QUADAS-2. We used the bivariate hierarchical model to indirectly compare tests at commonly reported thresholds in pre- and postmenopausal women separately. We indirectly compared tests across all thresholds and estimated sensitivity at fixed specificities of 80% and 90% by fitting hierarchical summary receiver operating characteristic (HSROC) models in pre- and postmenopausal women separately. MAIN RESULTS: We included 59 studies (32,059 women, 9545 cases of OC). Two tests evaluated the accuracy of a combination of menopausal status and USS findings (IOTA Logistic Regression Model 2 (LR2) and the Assessment of Different NEoplasias in the adneXa model (ADNEX)); one test evaluated the accuracy of a combination of menopausal status, USS findings and serum biomarker CA125 (Risk of Malignancy Index (RMI)); and one test evaluated the accuracy of a combination of menopausal status and two serum biomarkers (CA125 and HE4) (Risk of Ovarian Malignancy Algorithm (ROMA)). Most studies were at high or unclear risk of bias in participant, reference standard, and flow and timing domains. All studies were in hospital settings. Prevalence was 16% (RMI, ROMA), 22% (LR2) and 27% (ADNEX) in premenopausal women and 38% (RMI), 45% (ROMA), 52% (LR2) and 55% (ADNEX) in postmenopausal women. The prevalence of OC in the studies was considerably higher than would be expected in symptomatic women presenting in community-based settings, or in women referred from the community to hospital with a suspicion of OC. Studies were at high or unclear applicability because presenting features were not reported, or USS was performed by experienced ultrasonographers for RMI, LR2 and ADNEX. The higher sensitivity and lower specificity observed in postmenopausal compared to premenopausal women across all index tests and at all thresholds may reflect highly selected patient cohorts in the included studies. In premenopausal women, ROMA at a threshold of 13.1 (± 2), LR2 at a threshold to achieve a post-test probability of OC of 10% and ADNEX (post-test probability 10%) demonstrated a higher sensitivity (ROMA: 77.4%, 95% CI 72.7% to 81.5%; LR2: 83.3%, 95% CI 74.7% to 89.5%; ADNEX: 95.5%, 95% CI 91.0% to 97.8%) compared to RMI (57.2%, 95% CI 50.3% to 63.8%). The specificity of ROMA and ADNEX were lower in premenopausal women (ROMA: 84.3%, 95% CI 81.2% to 87.0%; ADNEX: 77.8%, 95% CI 67.4% to 85.5%) compared to RMI 92.5% (95% CI 90.3% to 94.2%). The specificity of LR2 was comparable to RMI (90.4%, 95% CI 84.6% to 94.1%). In postmenopausal women, ROMA at a threshold of 27.7 (± 2), LR2 (post-test probability 10%) and ADNEX (post-test probability 10%) demonstrated a higher sensitivity (ROMA: 90.3%, 95% CI 87.5% to 92.6%; LR2: 94.8%, 95% CI 92.3% to 96.6%; ADNEX: 97.6%, 95% CI 95.6% to 98.7%) compared to RMI (78.4%, 95% CI 74.6% to 81.7%). Specificity of ROMA at a threshold of 27.7 (± 2) (81.5, 95% CI 76.5% to 85.5%) was comparable to RMI (85.4%, 95% CI 82.0% to 88.2%), whereas for LR2 (post-test probability 10%) and ADNEX (post-test probability 10%) specificity was lower (LR2: 60.6%, 95% CI 50.5% to 69.9%; ADNEX: 55.0%, 95% CI 42.8% to 66.6%). AUTHORS' CONCLUSIONS: In specialist healthcare settings in both premenopausal and postmenopausal women, RMI has poor sensitivity. In premenopausal women, ROMA, LR2 and ADNEX offer better sensitivity (fewer missed cancers), but for ROMA and ADNEX this is off-set by a decrease in specificity and increase in false positives. In postmenopausal women, ROMA demonstrates a higher sensitivity and comparable specificity to RMI. ADNEX has the highest sensitivity in postmenopausal women, but reduced specificity. The prevalence of OC in included studies is representative of a highly selected referred population, rather than a population in whom referral is being considered. The comparative accuracy of tests observed here may not be transferable to non-specialist settings. Ultimately health systems need to balance accuracy and resource implications to identify the most suitable test.


Subject(s)
Ovarian Neoplasms , Biomarkers , Carcinoma, Ovarian Epithelial , Cross-Sectional Studies , Female , Humans , Menopause , Ovarian Neoplasms/diagnostic imaging , Sensitivity and Specificity
5.
Cochrane Database Syst Rev ; 6: CD009276, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35665911

ABSTRACT

BACKGROUND: Worldwide, many countries have adopted colorectal cancer (CRC) screening programmes, often based on faecal occult blood tests (FOBTs). CRC screening aims to detect advanced neoplasia (AN), which is defined as CRC or advanced adenomas. FOBTs fall into two categories based on detection technique and the detected blood component: qualitative guaiac-based FOBTs (gFOBTs) and faecal immunochemical tests (FITs), which can be qualitative and quantitative. Screening with gFOBTs reduces CRC-related mortality. OBJECTIVES: To compare the diagnostic test accuracy of gFOBT and FIT screening for detecting advanced colorectal neoplasia in average-risk individuals. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, BIOSIS Citation Index, Science Citation Index Expanded, and Google Scholar. We searched the reference lists and PubMed-related articles of included studies to identify additional studies. SELECTION CRITERIA: We included prospective and retrospective studies that provided the number of true positives, false positives, false negatives, and true negatives for gFOBTs, FITs, or both, with colonoscopy as reference standard. We excluded case-control studies. We included studies in which all participants underwent both index test and reference standard ("reference standard: all"), and studies in which only participants with a positive index test underwent the reference standard while participants with a negative test were followed for at least one year for development of interval carcinomas ("reference standard: positive"). The target population consisted of asymptomatic, average-risk individuals undergoing CRC screening. The target conditions were CRC and advanced neoplasia (advanced adenomas and CRC combined). DATA COLLECTION AND ANALYSIS: Two review authors independently screened and selected studies for inclusion. In case of disagreement, a third review author made the final decision. We used the Rutter and Gatsonis hierarchical summary receiver operating characteristic model to explore differences between tests and identify potential sources of heterogeneity, and the bivariate hierarchical model to estimate sensitivity and specificity at common thresholds: 10 µg haemoglobin (Hb)/g faeces and 20 µg Hb/g faeces. We performed indirect comparisons of the accuracy of the two tests and direct comparisons when both index tests were evaluated in the same population. MAIN RESULTS: We ran the initial search on 25 June 2019, which yielded 63 studies for inclusion. We ran a top-up search on 14 September 2021, which yielded one potentially eligible study, currently awaiting classification. We included a total of 33 "reference standard: all" published articles involving 104,640 participants. Six studies evaluated only gFOBTs, 23 studies evaluated only FITs, and four studies included both gFOBTs and FITs. The cut-off for positivity of FITs varied between 2.4 µg and 50 µg Hb/g faeces. For each Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2 domain, we assessed risk of bias as high in less than 20% of studies. The summary curve showed that FITs had a higher discriminative ability than gFOBTs for AN (P < 0.001) and CRC (P = 0.004). For the detection of AN, the summary sensitivity of gFOBTs was 15% (95% confidence interval (CI) 12% to 20%), which was significantly lower than FITs at both 10 µg and 20 µg Hb/g cut-offs with summary sensitivities of 33% (95% CI 27% to 40%; P < 0.001) and 26% (95% CI 21% to 31%, P = 0.002), respectively. Results were simulated in a hypothetical cohort of 10,000 screening participants with 1% CRC prevalence and 10% AN prevalence. Out of 1000 participants with AN, gFOBTs missed 850, while FITs missed 670 (10 µg Hb/g cut-off) and 740 (20 µg Hb/g cut-off). No significant differences in summary specificity for AN detection were found between gFOBTs (94%; 95% CI 92% to 96%), and FITs at 10 µg Hb/g cut-off (93%; 95% CI 90% to 95%) and at 20 µg Hb/g cut-off (97%; 95% CI 95% to 98%). So, among 9000 participants without AN, 540 were offered (unnecessary) colonoscopy with gFOBTs compared to 630 (10 µg Hb/g) and 270 (20 µg Hb/g) with FITs. Similarly, for the detection of CRC, the summary sensitivity of gFOBTs, 39% (95% CI 25% to 55%), was significantly lower than FITs at 10 µg and 20 µg Hb/g cut-offs: 76% (95% CI 57% to 88%: P = 0.001) and 65% (95% CI 46% to 80%; P = 0.035), respectively. So, out of 100 participants with CRC, gFOBTs missed 61, and FITs missed 24 (10 µg Hb/g) and 35 (20 µg Hb/g). No significant differences in summary specificity for CRC were found between gFOBTs (94%; 95% CI 91% to 96%), and FITs at the 10 µg Hb/g cut-off (94%; 95% CI 87% to 97%) and 20 µg Hb/g cut-off (96%; 95% CI 91% to 98%). So, out of 9900 participants without CRC, 594 were offered (unnecessary) colonoscopy with gFOBTs versus 594 (10 µg Hb/g) and 396 (20 µg Hb/g) with FITs. In five studies that compared FITs and gFOBTs in the same population, FITs showed a higher discriminative ability for AN than gFOBTs (P = 0.003). We included a total of 30 "reference standard: positive" studies involving 3,664,934 participants. Of these, eight were gFOBT-only studies, 18 were FIT-only studies, and four studies combined both gFOBTs and FITs. The cut-off for positivity of FITs varied between 5 µg to 250 µg Hb/g faeces. For each QUADAS-2 domain, we assessed risk of bias as high in less than 20% of studies. The summary curve showed that FITs had a higher discriminative ability for detecting CRC than gFOBTs (P < 0.001). The summary sensitivity for CRC of gFOBTs, 59% (95% CI 55% to 64%), was significantly lower than FITs at the 10 µg Hb/g cut-off, 89% (95% CI 80% to 95%; P < 0.001) and the 20 µg Hb/g cut-off, 89% (95% CI 85% to 92%; P < 0.001). So, in the hypothetical cohort with 100 participants with CRC, gFOBTs missed 41, while FITs missed 11 (10 µg Hb/g) and 11 (20 µg Hb/g). The summary specificity of gFOBTs was 98% (95% CI 98% to 99%), which was higher than FITs at both 10 µg and 20 µg Hb/g cut-offs: 94% (95% CI 92% to 95%; P < 0.001) and 95% (95% CI 94% to 96%; P < 0.001), respectively. So, out of 9900 participants without CRC, 198 were offered (unnecessary) colonoscopy with gFOBTs compared to 594 (10 µg Hb/g) and 495 (20 µg Hb/g) with FITs. At a specificity of 90% and 95%, FITs had a higher sensitivity than gFOBTs. AUTHORS' CONCLUSIONS: FITs are superior to gFOBTs in detecting AN and CRC in average-risk individuals. Specificity of both tests was similar in "reference standard: all" studies, whereas specificity was significantly higher for gFOBTs than FITs in "reference standard: positive" studies. However, at pre-specified specificities, the sensitivity of FITs was significantly higher than gFOBTs.


Subject(s)
Adenoma , Colorectal Neoplasms , Adenoma/diagnosis , Colorectal Neoplasms/diagnosis , Early Detection of Cancer/methods , Guaiac , Hemoglobins , Humans , Occult Blood , Prospective Studies , Retrospective Studies , Sensitivity and Specificity
6.
Clin Ther ; 44(2): 257-268, 2022 02.
Article in English | MEDLINE | ID: mdl-35078642

ABSTRACT

PURPOSE: The incidence of hepatocellular carcinoma (HCC) in the United Kingdom has increased 60% in the past 10 years. The epidemics of obesity and type 2 diabetes are contributing factors. In this article, we examine the impact of diabetes and glucose-lowering treatments on HCC incidence and overall survival (OS). METHODS: Data from 1064 patients diagnosed with chronic liver disease (CLD) (n = 340) or HCC (n = 724) were collected from 2007 to 2012. Patients with HCC were followed up prospectively. Univariate and multivariate logistic regression determined HCC risk factors. Kaplan-Meier curves were used to examine survival and Cox proportional hazards analysis estimated hazard ratios (HRs) for death according to use of glucose-lowering therapies. FINDINGS: Diabetes prevalence was 39.6% and 10.6% within the HCC and CLD cohorts, respectively. The odds ratio for having HCC in patients with diabetes was 5.55 (P < 0.001). Univariate analysis found an increased association of HCC with age, sex, cirrhosis, hemochromatosis, alcohol abuse, diabetes, and Child's Pugh score. In multivariate analysis age, sex, cirrhosis, Child's Pugh score, diabetes status, and insulin use retained significance. Diabetes status did not significantly affect OS in HCC; however, in people with diabetes and HCC, metformin treatment was associated with improved OS (mean survival, 31 vs 24 months; P =0.016; HR for death = 0.75; P = 0.032). IMPLICATIONS: Diabetes is significantly associated with HCC in the United Kingdom. Metformin treatment is associated with improved OS after HCC diagnosis. Treatment of diabetes should be appropriately reviewed in high-risk populations, with specific consideration of the potential hepatoprotective effects of metformin in HCC.


Subject(s)
Carcinoma, Hepatocellular , Diabetes Mellitus, Type 2 , Liver Neoplasms , Metformin , Carcinoma, Hepatocellular/epidemiology , Child , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Glucose , Humans , Incidence , Liver Cirrhosis/complications , Liver Neoplasms/epidemiology , Metformin/therapeutic use , Risk Factors
7.
Phlebology ; 37(2): 97-104, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34657519

ABSTRACT

BACKGROUND: Ultrasound guided foam sclerotherapy (UGFS) is a flexible and highly utilised tool in the treatment of varicose veins (VVs), both as a primary treatment and as an adjunct to other treatments. Concern remains regarding the risk of neurological adverse events (AEs) such as migraine, visual disturbance and serious adverse events (SAEs) such as cerebrovascular accident that have been reported after UGFS treatments. AIM: To determine the incidence of neurological AEs and SAEs after UGFS. METHODS: A prospective, multicentre, post-authorisation safety study across Europe (both private and government) was performed between January 2015-2020. Neurological adverse events after UGFS with Fibrovein® (Sodium Tetradecyl Sulfate) 1 and 3% physician generated foam. RESULTS: 8056 patients underwent treatment. There were 46 AE (including 5 SAEs), 30 (65%) SAEs were in female patients. Mean age was 55 years with mean body mass index (BMI) of 27. Univariable logistic regression demonstrate that UGFS only treatment (i.e. no adjunctive treatment), liquid-to-gas ratio, gas type and total foam volume (1% sodium tetradecyl sulfate, STS) were significantly associated with the odds of experiencing the outcome. Multivariable logistic regression model exhibits that migraine and total foam volume (1% STS) maintained statistical significance thus associated with the odds of adverse events. CONCLUSIONS: This study demonstrates that UGFS with Fibrovein is safe with a very low incidence of neurological AEs and SAEs. Past history of migraine, use of physiological gas (O2/CO2) and increasing volumes of 1% foam increase the risk of AEs.


Subject(s)
Sodium Tetradecyl Sulfate , Varicose Veins , Female , Humans , Middle Aged , Prospective Studies , Saphenous Vein , Sclerosing Solutions/adverse effects , Sclerotherapy/adverse effects , Sodium Tetradecyl Sulfate/adverse effects , Treatment Outcome , Varicose Veins/drug therapy
8.
Semin Arthritis Rheum ; 52: 151919, 2022 02.
Article in English | MEDLINE | ID: mdl-34782180

ABSTRACT

OBJECTIVE: To estimate and compare the diagnostic accuracy of magnetic resonance imaging (MRI) and ultrasound, for the prediction of rheumatoid arthritis (RA) in unclassified arthritis (UA). METHODS: MEDLINE, Embase and BIOSIS were searched from 1987 to May 2019. Studies evaluating any imaging test in participants with UA were eligible. Reference standards were RA classification criteria or methotrexate initiation. Two authors independently extracted data and assessed validity using QUADAS-2. Sensitivities and specificities were calculated for each imaging characteristic and joint area. Summary estimates with 95% confidence intervals (CI) were estimated where possible. RESULTS: Nineteen studies were included; 13 evaluated MRI (n=1,143; 454 with RA) and 6 evaluated ultrasound (n=531; 205 with RA). Studies were limited by unclear recruitment procedures, inclusion of patients with RA at baseline, differential verification, lack of blinding and consensus grading. Study heterogeneity largely precluded meta-analysis, however summary sensitivity and specificity for MRI synovitis in at least one joint were 93% (95% CI 88%, 96%) and 25% (95% CI 13%, 41%) (3 studies). Specificities may be higher for other MRI characteristics but data are limited. Ultrasound results were difficult to synthesise due to different diagnostic thresholds and reference standards. CONCLUSION: The evidence for MRI or ultrasound as single tests for predicting RA in people with UA is heterogeneous and of variable methodological quality. Larger studies using consensus grading and consistently defined RA diagnosis are needed to identify whether combinations of imaging characteristics, either alone or in combination with other clinical findings, can better predict RA in this population.


Subject(s)
Arthritis, Rheumatoid , Synovitis , Arthritis, Rheumatoid/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Sensitivity and Specificity , Synovitis/diagnostic imaging , Ultrasonography
9.
Br J Cancer ; 125(5): 714-716, 2021 08.
Article in English | MEDLINE | ID: mdl-34127809

ABSTRACT

BACKGROUND: The neutrophil-lymphocyte ratio (NLR), a presumed measure of the balance between neutrophil-associated pro-tumour inflammation and lymphocyte-dependent antitumour immune function, has been suggested as a prognostic factor for several cancers, including hepatocellular carcinoma (HCC). METHODS: In this study, a prospectively accrued cohort of 781 patients (493 HCC and 288 chronic liver disease (CLD) without HCC) were followed-up for more than 6 years. NLR levels between HCC and CLD patients were compared, and the effect of baseline NLR on overall survival amongst HCC patients was assessed via multivariable Cox regression analysis. RESULTS: On entry into the study ('baseline'), there was no clinically significant difference in the NLR values between CLD and HCC patients. Amongst HCC patients, NLR levels closest to last visit/death were significantly higher compared to baseline. Multivariable Cox regression analysis showed that NLR was an independent prognostic factor, even after adjustment for the HCC stage. CONCLUSION: NLR is a significant independent factor influencing survival in HCC patients, hence offering an additional dimension in prognostic models.


Subject(s)
Carcinoma, Hepatocellular/diagnosis , End Stage Liver Disease/diagnosis , Liver Neoplasms/diagnosis , Neutrophils/immunology , Carcinoma, Hepatocellular/immunology , Case-Control Studies , Diagnosis, Differential , End Stage Liver Disease/immunology , Humans , Liver Neoplasms/immunology , Lymphocyte Count , Prognosis , Prospective Studies , Sensitivity and Specificity , Survival Analysis
10.
J Hepatol ; 75(4): 879-887, 2021 10.
Article in English | MEDLINE | ID: mdl-34052255

ABSTRACT

BACKGROUND & AIMS: Sorafenib has been the standard of care for patients with advanced hepatocellular carcinoma and although immunotherapeutic approaches are now challenging this position, it retains an advantage in HCV-seropositive patients. We aimed to quantify the rate of tumour progression in patients receiving sorafenib and relate this figure to survival, both overall, and according to viral status. METHODS: Using serial data from an international clinical trial we applied a joint model to combine survival and progression over time in order to estimate the rate of tumour growth as assessed by tumour burden and serum alpha-fetoprotein, and the impact of treatment on liver function. RESULTS: High tumour burden at baseline was associated with an increased risk of death. In patients still alive at the end of the study, the progression in relation to tumour burden was very low compared to those who died within the study. Overall, the change in mean tumour burden was 0.12 mm per day or an absolute growth rate of 3.6 mm/month. Median doubling time was 665 days. For those who progressed above 0.12 mm per day or the 12% rate, median survival was 234 days compared to 384 days if the rate was below 12%. Tumour growth rate and serum alpha-fetoprotein rise were significantly lower in those who were HCV seropositive as was the rate of decline in liver function. These results were replicated in 2 independent patient groups. CONCLUSION: Our analysis suggests that sorafenib treatment is associated with improved survival in patients with advanced hepatocellular carcinoma mainly by decreasing the rate of tumour growth and liver function deterioration among patients with HCV infection. LAY SUMMARY: Among patients receiving sorafenib for advanced hepatocellular carcinoma the rate of tumour growth (as assessed by changes in tumour size and the biomarker alpha-fetoprotein) and the deterioration of liver function is less in those who have the hepatitis C virus, than in those who do not.


Subject(s)
Growth and Development/drug effects , Hepatitis C/complications , Liver Neoplasms/drug therapy , Sorafenib/pharmacology , Adult , Aged , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/physiopathology , Female , Hepatitis C/drug therapy , Humans , Liver/pathology , Liver Function Tests/methods , Liver Function Tests/statistics & numerical data , Liver Neoplasms/physiopathology , Male , Middle Aged , Sorafenib/therapeutic use
11.
Cochrane Database Syst Rev ; 3: CD013705, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33760236

ABSTRACT

BACKGROUND: Accurate rapid diagnostic tests for SARS-CoV-2 infection could contribute to clinical and public health strategies to manage the COVID-19 pandemic. Point-of-care antigen and molecular tests to detect current infection could increase access to testing and early confirmation of cases, and expediate clinical and public health management decisions that may reduce transmission. OBJECTIVES: To assess the diagnostic accuracy of point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. We consider accuracy separately in symptomatic and asymptomatic population groups. SEARCH METHODS: Electronic searches of the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) were undertaken on 30 Sept 2020. We checked repositories of COVID-19 publications and included independent evaluations from national reference laboratories, the Foundation for Innovative New Diagnostics and the Diagnostics Global Health website to 16 Nov 2020. We did not apply language restrictions. SELECTION CRITERIA: We included studies of people with either suspected SARS-CoV-2 infection, known SARS-CoV-2 infection or known absence of infection, or those who were being screened for infection. We included test accuracy studies of any design that evaluated commercially produced, rapid antigen or molecular tests suitable for a point-of-care setting (minimal equipment, sample preparation, and biosafety requirements, with results within two hours of sample collection). We included all reference standards that define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction (RT-PCR) tests and established diagnostic criteria). DATA COLLECTION AND ANALYSIS: Studies were screened independently in duplicate with disagreements resolved by discussion with a third author. Study characteristics were extracted by one author and checked by a second; extraction of study results and assessments of risk of bias and applicability (made using the QUADAS-2 tool) were undertaken independently in duplicate. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and pooled data using the bivariate model separately for antigen and molecular-based tests. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status. MAIN RESULTS: Seventy-eight study cohorts were included (described in 64 study reports, including 20 pre-prints), reporting results for 24,087 samples (7,415 with confirmed SARS-CoV-2). Studies were mainly from Europe (n = 39) or North America (n = 20), and evaluated 16 antigen and five molecular assays. We considered risk of bias to be high in 29 (50%) studies because of participant selection; in 66 (85%) because of weaknesses in the reference standard for absence of infection; and in 29 (45%) for participant flow and timing. Studies of antigen tests were of a higher methodological quality compared to studies of molecular tests, particularly regarding the risk of bias for participant selection and the index test. Characteristics of participants in 35 (45%) studies differed from those in whom the test was intended to be used and the delivery of the index test in 39 (50%) studies differed from the way in which the test was intended to be used. Nearly all studies (97%) defined the presence or absence of SARS-CoV-2 based on a single RT-PCR result, and none included participants meeting case definitions for probable COVID-19. Antigen tests Forty-eight studies reported 58 evaluations of antigen tests. Estimates of sensitivity varied considerably between studies. There were differences between symptomatic (72.0%, 95% CI 63.7% to 79.0%; 37 evaluations; 15530 samples, 4410 cases) and asymptomatic participants (58.1%, 95% CI 40.2% to 74.1%; 12 evaluations; 1581 samples, 295 cases). Average sensitivity was higher in the first week after symptom onset (78.3%, 95% CI 71.1% to 84.1%; 26 evaluations; 5769 samples, 2320 cases) than in the second week of symptoms (51.0%, 95% CI 40.8% to 61.0%; 22 evaluations; 935 samples, 692 cases). Sensitivity was high in those with cycle threshold (Ct) values on PCR ≤25 (94.5%, 95% CI 91.0% to 96.7%; 36 evaluations; 2613 cases) compared to those with Ct values >25 (40.7%, 95% CI 31.8% to 50.3%; 36 evaluations; 2632 cases). Sensitivity varied between brands. Using data from instructions for use (IFU) compliant evaluations in symptomatic participants, summary sensitivities ranged from 34.1% (95% CI 29.7% to 38.8%; Coris Bioconcept) to 88.1% (95% CI 84.2% to 91.1%; SD Biosensor STANDARD Q). Average specificities were high in symptomatic and asymptomatic participants, and for most brands (overall summary specificity 99.6%, 95% CI 99.0% to 99.8%). At 5% prevalence using data for the most sensitive assays in symptomatic people (SD Biosensor STANDARD Q and Abbott Panbio), positive predictive values (PPVs) of 84% to 90% mean that between 1 in 10 and 1 in 6 positive results will be a false positive, and between 1 in 4 and 1 in 8 cases will be missed. At 0.5% prevalence applying the same tests in asymptomatic people would result in PPVs of 11% to 28% meaning that between 7 in 10 and 9 in 10 positive results will be false positives, and between 1 in 2 and 1 in 3 cases will be missed. No studies assessed the accuracy of repeated lateral flow testing or self-testing. Rapid molecular assays Thirty studies reported 33 evaluations of five different rapid molecular tests. Sensitivities varied according to test brand. Most of the data relate to the ID NOW and Xpert Xpress assays. Using data from evaluations following the manufacturer's instructions for use, the average sensitivity of ID NOW was 73.0% (95% CI 66.8% to 78.4%) and average specificity 99.7% (95% CI 98.7% to 99.9%; 4 evaluations; 812 samples, 222 cases). For Xpert Xpress, the average sensitivity was 100% (95% CI 88.1% to 100%) and average specificity 97.2% (95% CI 89.4% to 99.3%; 2 evaluations; 100 samples, 29 cases). Insufficient data were available to investigate the effect of symptom status or time after symptom onset. AUTHORS' CONCLUSIONS: Antigen tests vary in sensitivity. In people with signs and symptoms of COVID-19, sensitivities are highest in the first week of illness when viral loads are higher. The assays shown to meet appropriate criteria, such as WHO's priority target product profiles for COVID-19 diagnostics ('acceptable' sensitivity ≥ 80% and specificity ≥ 97%), can be considered as a replacement for laboratory-based RT-PCR when immediate decisions about patient care must be made, or where RT-PCR cannot be delivered in a timely manner. Positive predictive values suggest that confirmatory testing of those with positive results may be considered in low prevalence settings. Due to the variable sensitivity of antigen tests, people who test negative may still be infected. Evidence for testing in asymptomatic cohorts was limited. Test accuracy studies cannot adequately assess the ability of antigen tests to differentiate those who are infectious and require isolation from those who pose no risk, as there is no reference standard for infectiousness. A small number of molecular tests showed high accuracy and may be suitable alternatives to RT-PCR. However, further evaluations of the tests in settings as they are intended to be used are required to fully establish performance in practice. Several important studies in asymptomatic individuals have been reported since the close of our search and will be incorporated at the next update of this review. Comparative studies of antigen tests in their intended use settings and according to test operator (including self-testing) are required.


Subject(s)
Antigens, Viral/analysis , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Point-of-Care Systems , SARS-CoV-2/immunology , Adult , Asymptomatic Infections , Bias , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing/standards , Child , Cohort Studies , False Negative Reactions , False Positive Reactions , Humans , Molecular Diagnostic Techniques/standards , Predictive Value of Tests , Reference Standards , Sensitivity and Specificity
12.
J Viral Hepat ; 28(1): 168-176, 2021 01.
Article in English | MEDLINE | ID: mdl-32978982

ABSTRACT

Whilst the benefit of direct-acting antiviral agents (DAAs) in achieving sustained virological response (SVR) is now well-accepted, their impact on liver function, particularly in relation to achievement of SVR, has not been well documented. We studied 2394 patients with chronic HCV infection, 1276 receiving DAAs and 1118 interferon-based therapy. Liver function was assessed by the albumin-bilirubin (ALBI) score or grade. Overall survival according to SVR status and baseline ALBI grade was examined. We also studied time to first decompensation according to ALBI grade, as well as longitudinal changes in ALBI score over time according to SVR. Among the patients receiving DAAs, 89% achieved SVR (Japan = 99%, UK = 78%). Amongst the decompensated patients in the UK cohort, three distinct risk groups according to ALBI grade at baseline were observed. The UK patients receiving DAAs, who had predominantly decompensated disease, showed clear evidence of improvement of liver function detectable within 2 years of the start of treatment, especially in those achieving SVR. These early changes in liver function were very similar to those observed in the first 2-3 years after interferon-based therapy. DAAs improve liver function especially in those with decompensated disease who achieve SVR. Experience with interferon-based therapy suggests that failure to achieve SVR is associated with long-term decline in liver function and, in contrast, patients who do achieve SVR can expect long-term disease improvement and subsequent stabilization of liver function. Our initial analysis suggests that those receiving DAAs are likely, in the long term, to follow a similar course.


Subject(s)
Hepatitis C, Chronic , Antiviral Agents/therapeutic use , Bilirubin , Hepacivirus , Hepatitis C, Chronic/drug therapy , Humans , Sustained Virologic Response
13.
Clin Gastroenterol Hepatol ; 19(1): 162-170.e4, 2021 01.
Article in English | MEDLINE | ID: mdl-32389887

ABSTRACT

BACKGROUND & AIMS: Ultrasound (US)-based screening has been recommended for patients with an increased risk of hepatocellular carcinoma (HCC). US analysis, however, is limited in patients who are obese or have small tumors. The addition of serum level of α-fetoprotein (AFP) measurements to US analysis can increase detection of HCC. We analyzed data from patients with chronic liver disease, collected over 15 years in an HCC surveillance program, to develop a model to assess risk of HCC. METHODS: We collected data from 3450 patients with chronic liver disease undergoing US surveillance in Japan from March 1998 through April 2014, and followed them up for a median of 8.83 years. We performed longitudinal discriminant analysis of serial AFP measurements (median number of observations/patient, 56; approximately every 3 months) to develop a model to determine the risk of HCC. We validated the model using data from 2 cohorts of patients with chronic liver disease in Japan (404 and 2754 patients) and 1 cohort in Scotland (1596 patients). RESULTS: HCC was detected in 413 patients (median tumor diameter, 1.8 cm), during a median follow-up time of 6.60 years. In the development data set, the model identified patients who developed HCC with an area under the curve of 0.78; it correctly identified 74.3% of patients who did develop HCC, and 72.9% of patients who did not. Overall, 73.1% of patients were classified correctly. The model could be used to assign patients to a high-risk group (27.5 HCCs/1000 patient-years) vs a low-risk group (4.9 HCCs/1000 patient-years). A similar performance was observed when the model was used to assess patients with cirrhosis. Analysis of the validation cohorts produced similar results. CONCLUSIONS: We developed and validated a model to identify patients with chronic liver disease who are at risk for HCC based on change in serum AFP level over time. The model could be used to assign patients to high-risk vs low-risk groups, and might be used to select patients for surveillance.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/epidemiology , Fetal Proteins , Humans , Liver Cirrhosis , Liver Neoplasms/diagnosis , Liver Neoplasms/epidemiology , alpha-Fetoproteins
14.
BMJ Open ; 10(11): e042453, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33158838

ABSTRACT

OBJECTIVES: To assess the accuracy and completeness of information provided by websites selling home self-sampling and testing kits for COVID-19. DESIGN: Cross-sectional observational study. SETTING: All websites (n=27) selling direct to user home self-sampling and testing kits for COVID-19 (41 tests) in the UK (39 tests) and USA (two tests) identified by a website search on 23 May 2020. MAIN OUTCOME MEASURES: Thirteen predefined basic information items to communicate to a user, including who should be tested, when and how testing should be done, test accuracy, and interpretation of results. RESULTS: Many websites did not provide the name or manufacturer of the test (32/41; 78%), when to use the test (10/41; 24%), test accuracy (12/41; 29%), and how to interpret results (21/41; 51%). Sensitivity and specificity were the most commonly reported test accuracy measures (either reported for 27/41 [66%] tests): we could only link these figures to manufacturers' documents or publications for four (10%) tests. Predictive values, most relevant to users, were rarely reported (five [12%] tests reported positive predictive values). For molecular virus tests, 9/23 (39%) websites explained that test positives should self-isolate, and 8/23 (35%) explained that test negatives may still have the disease. For antibody tests, 12/18 (67%) websites explained that testing positive does not necessarily infer immunity from future infection. Seven (39%) websites selling antibody tests claimed the test had a CE mark, when they were for a different intended use (venous blood rather than finger-prick samples). CONCLUSIONS: At the point of online purchase of home self-sampling COVID-19 tests, users in the UK are provided with incomplete, and, in some cases, misleading information on test accuracy, intended use, and test interpretation. Best practice guidance for communication about tests to the public should be developed and enforced for online sales of COVID-19 tests.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Internet , Pandemics , SARS-CoV-2 , Specimen Handling/methods , COVID-19/epidemiology , Cross-Sectional Studies , Humans , Reproducibility of Results
15.
Cochrane Database Syst Rev ; 8: CD013705, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32845525

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resulting COVID-19 pandemic present important diagnostic challenges. Several diagnostic strategies are available to identify or rule out current infection, identify people in need of care escalation, or to test for past infection and immune response. Point-of-care antigen and molecular tests to detect current SARS-CoV-2 infection have the potential to allow earlier detection and isolation of confirmed cases compared to laboratory-based diagnostic methods, with the aim of reducing household and community transmission. OBJECTIVES: To assess the diagnostic accuracy of point-of-care antigen and molecular-based tests to determine if a person presenting in the community or in primary or secondary care has current SARS-CoV-2 infection. SEARCH METHODS: On 25 May 2020 we undertook electronic searches in the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern, which is updated daily with published articles from PubMed and Embase and with preprints from medRxiv and bioRxiv. In addition, we checked repositories of COVID-19 publications. We did not apply any language restrictions. SELECTION CRITERIA: We included studies of people with suspected current SARS-CoV-2 infection, known to have, or not to have SARS-CoV-2 infection, or where tests were used to screen for infection. We included test accuracy studies of any design that evaluated antigen or molecular tests suitable for a point-of-care setting (minimal equipment, sample preparation, and biosafety requirements, with results available within two hours of sample collection). We included all reference standards to define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction (RT-PCR) tests and established clinical diagnostic criteria). DATA COLLECTION AND ANALYSIS: Two review authors independently screened studies and resolved any disagreements by discussion with a third review author. One review author independently extracted study characteristics, which were checked by a second review author. Two review authors independently extracted 2x2 contingency table data and assessed risk of bias and applicability of the studies using the QUADAS-2 tool. We present sensitivity and specificity, with 95% confidence intervals (CIs), for each test using paired forest plots. We pooled data using the bivariate hierarchical model separately for antigen and molecular-based tests, with simplifications when few studies were available. We tabulated available data by test manufacturer. MAIN RESULTS: We included 22 publications reporting on a total of 18 study cohorts with 3198 unique samples, of which 1775 had confirmed SARS-CoV-2 infection. Ten studies took place in North America, two in South America, four in Europe, one in China and one was conducted internationally. We identified data for eight commercial tests (four antigen and four molecular) and one in-house antigen test. Five of the studies included were only available as preprints. We did not find any studies at low risk of bias for all quality domains and had concerns about applicability of results across all studies. We judged patient selection to be at high risk of bias in 50% of the studies because of deliberate over-sampling of samples with confirmed COVID-19 infection and unclear in seven out of 18 studies because of poor reporting. Sixteen (89%) studies used only a single, negative RT-PCR to confirm the absence of COVID-19 infection, risking missing infection. There was a lack of information on blinding of index test (n = 11), and around participant exclusions from analyses (n = 10). We did not observe differences in methodological quality between antigen and molecular test evaluations. Antigen tests Sensitivity varied considerably across studies (from 0% to 94%): the average sensitivity was 56.2% (95% CI 29.5 to 79.8%) and average specificity was 99.5% (95% CI 98.1% to 99.9%; based on 8 evaluations in 5 studies on 943 samples). Data for individual antigen tests were limited with no more than two studies for any test. Rapid molecular assays Sensitivity showed less variation compared to antigen tests (from 68% to 100%), average sensitivity was 95.2% (95% CI 86.7% to 98.3%) and specificity 98.9% (95% CI 97.3% to 99.5%) based on 13 evaluations in 11 studies of on 2255 samples. Predicted values based on a hypothetical cohort of 1000 people with suspected COVID-19 infection (with a prevalence of 10%) result in 105 positive test results including 10 false positives (positive predictive value 90%), and 895 negative results including 5 false negatives (negative predictive value 99%). Individual tests We calculated pooled results of individual tests for ID NOW (Abbott Laboratories) (5 evaluations) and Xpert Xpress (Cepheid Inc) (6 evaluations). Summary sensitivity for the Xpert Xpress assay (99.4%, 95% CI 98.0% to 99.8%) was 22.6 (95% CI 18.8 to 26.3) percentage points higher than that of ID NOW (76.8%, (95% CI 72.9% to 80.3%), whilst the specificity of Xpert Xpress (96.8%, 95% CI 90.6% to 99.0%) was marginally lower than ID NOW (99.6%, 95% CI 98.4% to 99.9%; a difference of -2.8% (95% CI -6.4 to 0.8)) AUTHORS' CONCLUSIONS: This review identifies early-stage evaluations of point-of-care tests for detecting SARS-CoV-2 infection, largely based on remnant laboratory samples. The findings currently have limited applicability, as we are uncertain whether tests will perform in the same way in clinical practice, and according to symptoms of COVID-19, duration of symptoms, or in asymptomatic people. Rapid tests have the potential to be used to inform triage of RT-PCR use, allowing earlier detection of those testing positive, but the evidence currently is not strong enough to determine how useful they are in clinical practice. Prospective and comparative evaluations of rapid tests for COVID-19 infection in clinically relevant settings are urgently needed. Studies should recruit consecutive series of eligible participants, including both those presenting for testing due to symptoms and asymptomatic people who may have come into contact with confirmed cases. Studies should clearly describe symptomatic status and document time from symptom onset or time since exposure. Point-of-care tests must be conducted on samples according to manufacturer instructions for use and be conducted at the point of care. Any future research study report should conform to the Standards for Reporting of Diagnostic Accuracy (STARD) guideline.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Point-of-Care Systems , Antigens, Viral/analysis , COVID-19 , COVID-19 Testing , Coronavirus Infections/epidemiology , False Negative Reactions , False Positive Reactions , Humans , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Sensitivity and Specificity
17.
Liver Int ; 40(1): 215-228, 2020 01.
Article in English | MEDLINE | ID: mdl-31579990

ABSTRACT

BACKGROUND: The 'Prediction Of Survival in Advanced Sorafenib-treated HCC' (PROSASH) model addressed the heterogeneous survival of patients with hepatocellular carcinoma (HCC) treated with sorafenib in clinical trials but requires validation in daily clinical practice. This study aimed to validate, compare and optimize this model for survival prediction. METHODS: Patients treated with sorafenib for HCC at five tertiary European centres were retrospectively staged according to the PROSASH model. In addition, the optimized PROSASH-II model was developed using the data of four centres (training set) and tested in an independent dataset. These models for overall survival (OS) were then compared with existing prognostic models. RESULTS: The PROSASH model was validated in 445 patients, showing clear differences between the four risk groups (OS 16.9-4.6 months). A total of 920 patients (n = 615 in training set, n = 305 in validation set) were available to develop PROSASH-II. This optimized model incorporated fewer and less subjective parameters: the serum albumin, bilirubin and alpha-foetoprotein, and macrovascular invasion, extrahepatic spread and largest tumour size on imaging. Both PROSASH and PROSASH-II showed improved discrimination (C-index 0.62 and 0.63, respectively) compared with existing prognostic scores (C-index ≤0.59). CONCLUSIONS: In HCC patients treated with sorafenib, individualized prediction of survival and risk group stratification using baseline prognostic and predictive parameters with the PROSASH model was validated. The refined PROSASH-II model performed at least as good with fewer and more objective parameters. PROSASH-II can be used as a tool for tailored treatment of HCC in daily practice and to define pre-planned subgroups for future studies.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Predictive Value of Tests , Sorafenib/therapeutic use , Aged , Bilirubin/blood , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Female , Humans , Liver Neoplasms/blood , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Male , Middle Aged , Phenylurea Compounds/therapeutic use , Prognosis , Reproducibility of Results , Retrospective Studies , Risk Factors , Serum Albumin, Human/analysis , Survival Analysis , alpha-Fetoproteins/analysis
18.
J Hepatol ; 72(4): 711-717, 2020 04.
Article in English | MEDLINE | ID: mdl-31790765

ABSTRACT

BACKGROUND & AIMS: The popular sense of the word "cure" implies that a patient treated for a specific disease will return to have the same life expectancy as if he/she had never had the disease. In analytic terms, it translates into the concept of statistical cure which occurs when a group of patients returns to having similar mortality to a reference population. The aim of this study was to assess the probability of being cured from hepatocellular carcinoma (HCC) by hepatic resection. METHODS: Data from 2,523 patients undergoing resection for HCC were used to fit statistical cure models, to compare disease-free survival (DFS) after surgery to the survival expected for patients with chronic hepatitis and/or cirrhosis and the general population, matched by sex, age, race/ethnicity and year of diagnosis. RESULTS: The probability of resection enabling patients with HCC to achieve the same life expectancy as those with chronic hepatitis and/or cirrhosis was 26.3%. The conditional probability of achieving this result was time-dependent, requiring about 8.9 years to be accomplished with 95% certainty. Considering the general population as a reference, the cure fraction decreased to 17.1%. Uncured patients had a median DFS of 1.5 years. In multivariable analysis, patient's age and the risk of early HCC recurrence (within 2 years) were independent determinants of the chance of cure (p <0.001). The chances of being cured ranged between 36.0% for individuals at low risk of early recurrence to approximately 3.6% for those at high risk. CONCLUSION: Estimates of the chance of being cured of HCC by resection showed that cure is achievable, and its likelihood increases with the passing of recurrence-free time. The data presented herein can be used to inform decision making and to provide patients with accurate information. LAY SUMMARY: Data from 2,523 patients who underwent resection for hepatocellular carcinoma were used to estimate the probability that resection would enable treated patients to achieve the same life expectancy as patients with chronic hepatitis and/or cirrhosis, and the general population. Herein, the cure model suggests that in patients with hepatocellular carcinoma, resection can enable patients to achieve the same life expectancy as those with chronic liver disease in 26.3% of cases and as the general population in 17.1% of cases.


Subject(s)
Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/surgery , Hepatectomy/methods , Hepatitis, Chronic/mortality , Life Expectancy , Liver Cirrhosis/mortality , Liver Neoplasms/mortality , Liver Neoplasms/surgery , Models, Statistical , Aged , Disease-Free Survival , Female , Follow-Up Studies , Humans , Male , Middle Aged , Neoplasm Recurrence, Local , Retrospective Studies , Risk
19.
Hepatology ; 72(1): 198-212, 2020 07.
Article in English | MEDLINE | ID: mdl-31698504

ABSTRACT

BACKGROUND AND AIMS: The heterogeneity of intermediate-stage hepatocellular carcinoma (HCC) and the widespread use of transarterial chemoembolization (TACE) outside recommended guidelines have encouraged the development of scoring systems that predict patient survival. The aim of this study was to build and validate statistical models that offer individualized patient survival prediction using response to TACE as a variable. APPROACH AND RESULTS: Clinically relevant baseline parameters were collected for 4,621 patients with HCC treated with TACE at 19 centers in 11 countries. In some of the centers, radiological responses (as assessed by modified Response Evaluation Criteria in Solid Tumors [mRECIST]) were also accrued. The data set was divided into a training set, an internal validation set, and two external validation sets. A pre-TACE model ("Pre-TACE-Predict") and a post-TACE model ("Post-TACE-Predict") that included response were built. The performance of the models in predicting overall survival (OS) was compared with existing ones. The median OS was 19.9 months. The factors influencing survival were tumor number and size, alpha-fetoprotein, albumin, bilirubin, vascular invasion, cause, and response as assessed by mRECIST. The proposed models showed superior predictive accuracy compared with existing models (the hepatoma arterial embolization prognostic score and its various modifications) and allowed for patient stratification into four distinct risk categories whose median OS ranged from 7 months to more than 4 years. CONCLUSIONS: A TACE-specific and extensively validated model based on routinely available clinical features and response after first TACE permitted patient-level prognostication.


Subject(s)
Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/therapy , Chemoembolization, Therapeutic , Liver Neoplasms/mortality , Liver Neoplasms/therapy , Models, Statistical , Adult , Aged , Arteries , Chemoembolization, Therapeutic/methods , Cohort Studies , Female , Humans , Male , Middle Aged , Prognosis , Survival Rate
20.
Clin Gastroenterol Hepatol ; 18(3): 728-735.e4, 2020 03.
Article in English | MEDLINE | ID: mdl-31712073

ABSTRACT

BACKGROUND & AIMS: The prevalence of nonalcoholic steatohepatitis (NASH) associated hepatocellular carcinoma (HCC) is increasing. However, strategies for detection of early-stage HCC in patients with NASH have limitations. We assessed the ability of the GALAD score, which determines risk of HCC based on patient sex; age; and serum levels of α-fetoprotein (AFP), AFP isoform L3 (AFP-L3), and des-gamma-carboxy prothrombin (DCP), to detect HCC in patients with NASH. METHODS: We performed a case-control study of 125 patients with HCC (20% within Milan Criteria) and 231 patients without HCC (NASH controls) from 8 centers in Germany. We compared the performance of serum AFP, AFP-L3, or DCP vs GALAD score to identify patients with HCC using receiver operating characteristic curves and corresponding area under the curve (AUC) analyses. We also analyzed data from 389 patients with NASH under surveillance for HCC in Japan, followed for a median of 167 months. During the 5-year screening period, 26 patients developed HCC. To compensate for irregular intervals of data points, we performed locally weighted scatterplot smoothing, linear regression, and a non-linear curve fit to assess development of GALAD before HCC development. RESULTS: The GALAD score identified patients with any stage HCC with an AUC of 0.96 - significantly greater than values for serum levels of AFP (AUC, 0.88), AFP-L3 (AUC, 0.86) or DCP (AUC, 0.87). AUC values for the GALAD score were consistent in patients with cirrhosis (AUC, 0.93) and without cirrhosis (AUC, 0.98). For detection of HCC within Milan Criteria, the GALAD score achieved an AUC of 0.91, with a sensitivity of 68% and specificity of 95% at a cutoff of -0.63. In a pilot Japanese cohort study, the mean GALAD score was higher in patients with NASH who developed HCC than in those who did not develop HCC as early as 1.5 years before HCC diagnosis. GALAD scores were above -0.63 approximately 200 days before the diagnosis of HCC. CONCLUSIONS: In a case-control study performed in Germany and a pilot cohort study in Japan, we found the GALAD score may detect HCC with high levels of accuracy in patients with NASH, with and without cirrhosis. The GALAD score can detect patients with early-stage HCC, and might facilitate surveillance of patients with NASH, who are often obese, which limits the sensitivity of detection of liver cancer by ultrasound.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Biomarkers , Biomarkers, Tumor , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/epidemiology , Case-Control Studies , Cohort Studies , Humans , Liver Neoplasms/diagnosis , Liver Neoplasms/epidemiology , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnosis , Pilot Projects , Protein Precursors , Prothrombin , ROC Curve , Sensitivity and Specificity , alpha-Fetoproteins
SELECTION OF CITATIONS
SEARCH DETAIL
...